Graph database use case: Insurance fraud detection

Graph database use case: Insurance fraud detection

According to a fact sheet released by the Southwest Insurance Information Service (SIIS), Approximately 10% of all insurance claims are fraudulent, and nearly $80 billion in fraudulent claims are spent annually in the U.S., estimates the Coalition Against Insurance Fraud. Insurance fraud is certainly an issue that must be addressed given the benefits both the insurer and the insured will obtain from its prevention: the insurance buyer is able to receive coverage at a lower price, which gives the insurance company a competitive advantage.

Insurance fraud can be perpetrated by the seller or the buyer. Seller fraud occurs when the seller of a policy hijacks the usual process, in a way that maximizes his or her profit. Some examples are premium diversion, fee churning, ghost companies and worker’s compensation fraud. Buyer fraud occurs when the buyer deliberately invents or exaggerates a loss in order to obtain more coverage or receive payment for damages. Some examples are false medical history, murder for proceeds, post-dated life insurance and faking accidents.

Traditional methods to detect and prevent this form of fraud include duplicate testing, using date validation systems, calculating statistical parameters to identify outliers, using stratification or other types of analysis to identify unusual entries, and identifying gaps on sequential data. These methods are a great way to catch most of the casual, single fraudsters, but sophisticated fraud rings are usually well-organized and informed enough to avoid being spotted by the traditional means. They use layered “false” collusions in a similar way than money laundry rings.

In this scenario, where implementing alternative fraud detection methods is crucial, graph database management systems play a significant role. In the case of buyer fraud, the only way to catch the complex layered collusion performed by criminal rings is to analyze the relationships of the elements involved in the claim, which is a tedious task to perform on a relational database.

 

Share it:
Share it:

[Social9_Share class=”s9-widget-wrapper”]

Leave a Reply

Your email address will not be published. Required fields are marked *

This site uses Akismet to reduce spam. Learn how your comment data is processed.

You Might Be Interested In

Here’s How Blockchain and AI are Improving Personal Data Privacy

3 Jun, 2022

Blockchain and AI are set to be two of the biggest game-changers in digital technology. Blockchain has been described as …

Read more

Mobile Business Intelligence: Strategies, Trends and Pitfalls

4 Aug, 2017

In pursuit of informed decision-making, should employees be bound to their desktops to access reports and dashboards? Or should field …

Read more

How AI is accelerating the transition to renewable energy

18 Jul, 2021

Offshore wind power has fast become one of the most promising renewable sources of energy. Its growth is expected to …

Read more

Recent Jobs

IT Engineer

Washington D.C., DC, USA

1 May, 2024

Read More

Data Engineer

Washington D.C., DC, USA

1 May, 2024

Read More

Applications Developer

Washington D.C., DC, USA

1 May, 2024

Read More

D365 Business Analyst

South Bend, IN, USA

22 Apr, 2024

Read More

Do You Want to Share Your Story?

Bring your insights on Data, Visualization, Innovation or Business Agility to our community. Let them learn from your experience.

Get the 3 STEPS

To Drive Analytics Adoption
And manage change

3-steps-to-drive-analytics-adoption

Get Access to Event Discounts

Switch your 7wData account from Subscriber to Event Discount Member by clicking the button below and get access to event discounts. Learn & Grow together with us in a more profitable way!

Get Access to Event Discounts

Create a 7wData account and get access to event discounts. Learn & Grow together with us in a more profitable way!

Don't miss Out!

Stay in touch and receive in depth articles, guides, news & commentary of all things data.